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Accelerating antibody discovery 
and optimization with high‑throughput 
experimentation and machine learning
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Abstract 

The integration of high-throughput experimentation and machine learning is transforming data-driven antibody 
engineering, revolutionizing the discovery and optimization of antibody therapeutics. These approaches employ 
extensive datasets comprising antibody sequences, structures, and functional properties to train predictive 
models that enable rational design. This review highlights the significant advancements in data acquisition 
and feature extraction, emphasizing the necessity of capturing both sequence and structural information. We 
illustrate how machine learning models, including protein language models, are used not only to enhance affinity 
but also to optimize other crucial therapeutic properties, such as specificity, stability, viscosity, and manufacturability. 
Furthermore, we provide practical examples and case studies to demonstrate how the synergy between experimental 
and computational approaches accelerates antibody engineering. Finally, this review discusses the remaining 
challenges in fully realizing the potential of artificial intelligence (AI)-powered antibody discovery pipelines 
to expedite therapeutic development.

Keywords  Antibody therapeutics, Machine learning, Data-driven design, Antibody design, Computational antibody 
engineering

Background
Antibody therapeutics have become increasingly 
important over the past few decades, highlighting 
the crucial role of antibodies in immune responses. 
These biomolecules have become a major focus in drug 
development owing to their unique specificity and 
versatility. Initially used primarily to treat cancers and 
autoimmune disorders, the use of antibodies as drugs has 

rapidly expanded in recent years. They are currently being 
actively investigated for the treatment of several diseases, 
including infectious diseases [1] and allergies [2], which 
is driving substantial growth of this therapeutic modality.

The global therapeutic antibody market is experiencing 
rapid growth driven by an aging population, an increase 
in chronic diseases, and a shift toward biologics that 
provide targeted therapeutic mechanisms. Emerging 
economies are witnessing a surge in demand for antibody 
drugs, driven by rising healthcare expenditures and 
improved access to advanced treatments. Consequently, 
the antibody therapeutic pipeline continues to flourish, 
with more than 100 new candidates currently undergoing 
late-stage clinical development [3].

A significant challenge faced by the pharmaceutical 
industry is the accelerated development of novel, 
highly effective, and safe antibody drugs to meet 
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the increasing global demand for such treatments 
[4]. Rapid optimization of lead candidates with 
improved therapeutic profiles is crucial for delivering 
innovative treatments to patients worldwide [5–7]. 
Conventional antibody development in the laboratory 
has been hampered by significant constraints in terms 
of throughput, cost, and exploration of vast candidate 
spaces. Traditional approaches such as hybridoma 
technology require laborious procedures, including 
the isolation of antibody-producing cells, cloning, and 
screening, and often require several months or years to 
identify lead candidates. A key challenge lies in the need 
to evaluate multiple antibody candidates to identify 
those with the desired antigen specificity. However, these 
experimental techniques are limited by their ability to 
investigate diverse antibody sequences and structures. 
Characterization of antibody candidates requires various 
low-throughput experimental assays, such as binding 
affinity measurements and X-ray crystallography studies, 
to assess critical properties, such as antigen recognition, 
affinity, and specificity. This bottleneck hinders the rapid 
evaluation of large antibody libraries.

Antibody affinity maturation, which increases 
antibody binding strength, is crucial for obtaining 
optimal therapeutic candidates. Conventional methods 
have significant limitations in efficiently exploring 
sequence spaces for improved variants. The evaluation 
of physicochemical properties and formulation 
stability, which are essential for manufacturing and 
therapeutic applications, is equally important. This is 
also a labor-intensive process that relies on empirical 
experimentation.

Recent advances in high-throughput experiments and 
machine learning (ML) have led to the emergence of data-
driven approaches as powerful paradigms for accelerating 
antibody development [8–12]. These methods utilize 
large-scale datasets, encompassing antibody sequences, 
structures, and binding assay readouts, in conjunction 
with ML algorithms to facilitate the rational design and 
optimization of therapeutic antibody candidates (Fig. 1). 
In contrast to traditional empirical and trial-and-error 
approaches, data-driven engineering of antibodies offers 
a more systematic and efficient framework for antibody 
discovery and the optimization of lead candidate 
antibodies. Crucially, this approach goes beyond merely 
improving affinity; by capturing intricate sequence–
structure–function relationships, data-driven methods 
can predict and optimize various properties relevant to 
developability, including affinity, cross-reactivity, and 
physicochemical stability, without exhaustive empirical 
screening.

This review highlights the recent advancements in 
data-driven antibody engineering, focusing on the crucial 

role of high-throughput experimental data acquisition 
in these developments. It explores the key components 
of the field, including data acquisition techniques, 
computational analysis of antibody sequences and 
structures, and ML models for predicting both affinity 
and comprehensive developability profiles. The 
integration of large-scale data with advanced ML models 
offers an efficient framework for accelerating antibody 
development, which has been extensively reviewed [8, 
10, 13–17]. Unlike previous reviews, we emphasized the 
synergy between high-throughput experimentation and 
computational modeling, particularly for experimental 
scientists seeking to leverage this approach. This synergy 
supports rational in silico optimization and significantly 
improves empirical methods. Finally, we address 
the challenges ahead and potential of AI in antibody 
discovery for on-demand therapeutic antibody design 
and development.

High‑throughput data acquisition methodology
First, we reviewed the experimental techniques required 
for data-driven antibody design. To provide a context for 
the specific antibody design applications discussed in a 
later section, we briefly describe this technology and its 
features.

Next‑generation sequencing (NGS) technologies
Next-generation sequencing (NGS) technologies have 
revolutionized antibody repertoire analysis by enabling 
massive parallel high-throughput sequencing, providing 
a detailed view of diverse antibody repertoires [18]. 
Different NGS platforms, such as Illumina [19], Ion 
Torrent [20], Pacific Biosciences (PacBio) [21], and 
Oxford Nanopore [22], offer unique advantages in 
terms of read length, accuracy, and throughput. These 
technologies have facilitated the identification of rare 
clones within antibody repertoires and enabled the 
study of antibody lineage evolution during affinity 
maturation [23–26]. Long-read sequencing is particularly 
important for capturing complete variable regions and 
characterizing complementarity determining regions 
(CDRs) with high precision [23]. Furthermore, optimized 
library preparation protocols, incorporating antibody-
specific amplification, target enrichment, and unique 
molecular identifiers, have significantly enhanced the 
efficiency of NGS for antibody analysis [24, 26]. Coupled 
with the development of tailored bioinformatics methods 
[25], these advancements provide unprecedented depth 
of analysis, opening new avenues for understanding the 
complexities of antibody repertoires [27]. Specifically, 
BCR sequencing, a specialized application of NGS, allows 
for the detailed analysis of B-cell receptor diversity, 
including the identification of paired heavy and light 
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chain sequences from individual B cells [23–25]. This 
information is crucial for understanding the antibody 
repertoire and identifying antibodies with specific 
binding properties, which can be further developed into 
therapeutics.

Display technologies for antibody library screening
Antibody display technologies, in conjunction with 
techniques such as biopanning and fluorescence-
activated cell sorting (FACS), have become invaluable 
for the high-throughput screening of antibody libraries 

Fig. 1  Concept of data-driven antibody design. An overview of a typical process is presented. This process encompasses several critical 
stages, beginning with the construction of diverse antibody libraries via methods such as yeast or phage display techniques. This is followed 
by high-throughput screening, which uses techniques such as FACS or biopanning to identify cells that produce antibodies with the desired 
properties. NGS is then employed to reveal DNA sequences of antibody-encoding genes from these selected cells. The resulting sequence data 
are transformed into numerical features via methods such as protein language models or graph neural networks. These features, in conjunction 
with experimental data, are employed to train an ML model with the objective of establishing relationships between antibody sequences 
and their properties. The trained model then predicts the properties of new antibody sequences and identifies promising candidates for further 
development. These predicted optimal antibodies are then produced, and their properties are validated through experimental assays. In some 
cases, the data obtained from these experimental assays are fed back into the library design or the ML model to refine its predictive capabilities, 
creating a closed-loop optimization process
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(Table 1). These technologies help identify the sequences 
of rare antibody binders from vast sequence spaces. 
Phage display technology facilitates the expression of 
antibody fragments on phage coat proteins, which can 
be enriched against immobilized antigens [28–30]. This 
allowed the screening of libraries larger than 1010 in size. 
Yeast displays employ yeast cells to express antibodies 
on their surfaces, which can then be sorted via FACS to 
detect fluorescent antigens [31–34]. This approach takes 
advantage of eukaryotic protein folding and enables the 
exploration of libraries up to 109 in size. Mammalian 
cell displays detect the expression of antibodies on 
mammalian cell surfaces [35, 36]. This approach offers 
a screening environment that closely mimics natural 
antibody conditions and post-translational modifications.

In addition, cell-free systems such as ribosome 
or cDNA displays facilitate the rapid exploration of 
sequence diversity without the need for transformation 
or transfection [37, 38]. These technologies enable the 
enrichment of antibodies that bind to antigens with 
desirable characteristics such as high specificity and 
affinity. Furthermore, the advent of techniques such as 
microfluidic screening and droplet-based microfluidics 
has revolutionized the field by enabling high-throughput 
screening of antibody libraries at a single-clone resolution 
[39]. A combination of different display platforms and 
advanced screening methods allows access to a wide 
array of antibody sequences, thereby paving the way for 
the identification of optimal antibodies for therapeutic 
applications.

High‑throughput analysis of antigen‒antibody 
interactions
The comprehensive characterization of antigen-binding 
properties is essential after the initial screening of 
antibody libraries to identify lead candidates [40]. 
High-throughput techniques, such as enzyme-linked 
immunosorbent assay (ELISA), bio-layer interferometry 
(BLI) and surface plasmon resonance (SPR), offer 
quantitative assessment of antibody‒antigen interactions 
at the single-clone level, providing valuable insights into 
kinetics, affinity, and specificity (Table 2).

Although ELISA is a widely used and cost-effective 
plate-based method for measuring antibody binding, it 
cannot provide kinetic information, unlike BLI and SPR. 
BLI is a label-free technique that measures interference 
patterns resulting from the interaction between 
antibodies on biosensors and antigens in solution 
[41]. This allowed for real-time analysis of up to 96 
simultaneous interactions. Taking advantage of the ease 
of measurement, combined with a cell-free expression 
system, we developed FASTIA, a system that can analyze 
the binding characteristics of dozens of antibody variants 

in two days [42]. Similarly, SPR is another label-free 
method that detects changes in the refractive index at 
the sensor surface upon antigen‒antibody binding. This 
enabled screening of antibody clones in kinetic assays 
and epitope binning. Until recently, the throughput of 
SPR measurements was limited. However, in recent years, 
some models have become capable of simultaneously 
measuring multiple samples. Recent advancements have 
led to the development of high-throughput systems 
capable of simultaneously measuring hundreds of 
antibody‒antigen interactions. For example, systems such 
as BreviA [43] utilize instruments capable of measuring 
384 interactions simultaneously. These high-throughput 
systems generate large datasets of binding kinetics and 
affinity, which are essential for training and validating 
machine learning models used in data-driven antibody 
design.

Instead of using a specific device dedicated to 
measuring interactions, an ingenious system was 
proposed that allows the ribosomal display of antibodies 
on an Illumina flow cell to measure 108 interactions 
with antigens [37]; however the accuracy may be 
limited by incomplete control of the antigen supply and 
dissociation.

These biophysical methods yield detailed binding-
affinity data that are crucial for the development of lead 
antibodies. These assays enable the efficient screening 
of extensive antibody collections when integrated with 
robotic systems and automated liquid handling. These 
high-throughput characterization techniques accelerate 
the identification of prime therapeutic candidates and 
support targeted antibody engineering on the basis of 
thorough antigen-binding analyses.

High‑throughput stability analysis
Evaluating the physicochemical stability of antibodies via 
high-throughput methods is essential for assessing their 
developability and manufacturing feasibility. Techniques 
such as differential scanning calorimetry (DSC) offer 
in-depth thermodynamic stability profiles [44], but are 
limited by their low throughput, which restricts their 
widespread use in antibody engineering. In contrast, 
differential scanning fluorimetry (DSF) allows rapid 
assessment of antibody stability by detecting changes in 
fluorescence as proteins unfold, indicating the exposure 
of hydrophobic regions. This method facilitates rapid 
ranking of antibody stability in a plate-based format 
[45]. By refining the methodology for high-throughput 
interaction analysis described previously [43], we 
developed a novel system that permits the simultaneous 
production of antibodies, sequencing via nanopore 
technology, and acquisition of thermal stability data for 
hundreds of antibodies via DSF [46]. Instead of directly 
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measuring denaturation, activity-based stability assays 
enable the comparison of the relative stabilities of various 
antibody variants by assessing their retained activity after 
exposure to thermal or chemical stress [47].

The integration of these high-throughput methods 
enables antibody engineers to screen and prioritize 
several candidate antibodies efficiently on the basis 
of their physicochemical properties. This streamlines 
the selection of stable leads for further refinement and 
development of manufacturing processes.

Feature extraction from antibodies for ML
To perform ML of antibodies via high-throughput 
experimental data, such as those described above, each 
antibody must be represented as numerical data. This 
section briefly outlines the methodology used to obtain 
the representation.

Feature extraction from sequences
Sequence-based featurization plays a crucial role in 
translating primary antibody structures into informative 
input representations for use in ML models. The most 
basic approach is one-hot encoding [29, 34, 35], which 
constructs a binary vector indicating the presence or 
absence of each amino acid at each position in the 
sequence. However, simple one-hot encoding fails to 
capture any biochemical relationships between residues. 
More advanced featurization strategies have been 
developed to incorporate biophysical and structural 
properties. For example, encoding schemes based on 
the physicochemical properties of residues [34], such 
as hydrophobicity, charge, and size, can provide more 
comprehensive representations that accurately reflect 
sequence‒structure relationships. Additionally, statistical 
metrics, such as position-specific scoring matrices 
(PSSMs) derived from multiple sequence alignments, 
offer insights into evolutionarily conserved patterns [48, 
49].

Recently, language models pre-trained on massive 
protein sequence databases have emerged as powerful 
featurizers (Table  3). These protein language models, 
which are analogous to text-based models such as Long 
Short Term Memory (LSTM) [50] and Bidirectional 
Encoder Representations from Transformers (BERT) 
[51], learn the contextual representations of amino 
acid sequences through self-supervised training. When 
applied to antibody sequences, they can capture complex 
patterns and long-range dependencies relevant to 
antibody behavior.

A common approach for utilizing PLMs is to 
compute embeddings for each residue in the antibody 
sequence. These residue-level embeddings, which are 
high-dimensional vectors representing the contextual 

information of each amino acid, can then be aggregated 
(e.g., by averaging) to obtain a fixed-length vector 
representation of the entire antibody sequence or 
specific regions such as CDRs. This vector can be 
used as input for downstream machine learning tasks, 
such as predicting binding affinity, specificity, or 
developability. However, it is important to note that 
this is not the only way to utilize PLM-derived features. 
Other approaches include using the residue-level 
embeddings directly as inputs for convolutional neural 
networks or graph neural networks, or employing 
attention mechanisms to focus on specific residues 
or regions that are important for the prediction task. 
Another approach involves the utilization of per-
residue likelihood scores generated by the PLM. These 
scores, which reflect the probability of observing a 
particular amino acid at a given position, taking into 
account the context of the surrounding sequence, may 
indicate regions that are important for function or 
stability.

UniRep, an early example of a protein language model, 
utilizes LSTM and is trained on over 24 million protein 
sequences [52]. It can generate a 1900-dimensional 
embedding for any given protein sequence [53], 
providing valuable information for protein engineering 
tasks, such as predicting binding affinity, stability, and 
expression levels. ESM-1b is another powerful model 
that leverages the transformer architecture and is 
trained on over 250 million protein sequences [54]. It 
can generate 1280-dimensional embeddings and excels 
in tasks such as secondary structure prediction, contact 
map prediction, and remote homology detection [55]. 
ESM-2, a successor to ESM-1b, further improves its 
performance and generalizability [56]. When trained 
on a massive dataset of protein sequences, ESM-2 can 
predict the structure, function, and other properties from 
a sequence alone. This ability to capture fundamental 
aspects of protein biology makes it valuable for various 
antibody engineering applications.

Specialized protein language models have been 
developed specifically for antibodies. AntiBERTy, a 
BERT-based model, was trained on natural antibody 
sequences [57] and initially designed to understand 
antibody affinity maturation. AbLang, trained on a 
comprehensive dataset of antibody sequences in the 
Observed Antibody Space (OAS) database [58, 59], 
can restore missing residues in antibody sequences. 
Following these advancements, Kenlay et  al. developed 
IgBert and IgT5, training on a massive dataset of over 
two billion unpaired antibody sequences and two million 
paired sequences from the OAS database [60]. The ability 
to handle both paired and unpaired antibody sequences 
makes these models superior to existing antibody and 
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protein language models in terms of sequence recovery, 
affinity prediction, and expression prediction.

These protein- and antibody-specific language models 
have become invaluable tools in antibody engineering, 
enabling researchers to harness the power of deep 
learning to address complex problems in antibody design 
and optimization.

Feature extraction from structures
While sequence-based characteristics are important, 
three-dimensional (3D) structural data can improve ML 
models for antibody engineering. Structural features 
provide valuable insights into the spatial arrangements 
and interactions that govern antibody function and 
biophysical properties.

Graphical protein structure representations are 
effective for featurization. In this framework, individual 
residues are treated as nodes, and their spatial 
relationships, such as distances, angles, and inter-
residue contacts, are encoded as edges. This graph-
based representation captures the intricate network 
of interactions within an antibody structure. Graph 
neural networks (GNNs), a class of deep learning 
models designed to operate on graph-structured data, 
can then be applied to ascertain rich representations 
from these antibody structure graphs. GNNs propagate 
and aggregate information along the edges, effectively 

capturing both local and global structural contexts 
relevant for predicting the epitopes of antibodies [61–63].

Recent advancements in protein language models 
have demonstrated their ability to integrate sequence 
and structure information. Unlike its predecessors, 
such as ESM-1b or ESM2, ESM3 explicitly incorporates 
3D structural data during training [64]. This allows 
the model to learn a richer representation of proteins, 
capturing the intricate relationships between sequences, 
structures, and functions. ESM3 uses a discrete 
autoencoder to tokenize protein structures, representing 
them as a sequence of discrete tokens that capture the 
local structural neighborhoods around each amino 
acid. This innovative approach enables ESM3 to excel in 
both structure prediction and generation tasks, thereby 
demonstrating its potential for programmable protein 
engineering.

Integrating these structure-based featurization 
techniques with sequence-based approaches, including 
those employed in models such as ESM3, will lead to 
significant improvements in the prediction of various 
antibody properties. This will improve in silico screening 
and therapeutic candidate design. Recent advances have 
enabled the incorporation of 3D structural information 
into antibodies [65, 66]. Structure-aware pre-training 
enables the model develop meaningful representations 
that better capture these intricate antibody sequence‒
structure relationships.

Table 3  Representative pre-trained protein language models that can be used for the extraction of antibody features

Model Name Architecture Training Data Validated Applications References

UniRep Multiplicative Long Short-Term 
Memory (mLSTM)

UniRef50 sequences [52] Predicting binding affinity, stability, 
and expression levels

[53]

ESM-1b Transformer UniRef50 sequences Secondary structure prediction, 
contact map prediction, remote 
homology detection

[55]

ESM-2 Transformer UniRef50 and UniRef90 sequences Atomic-level protein structure 
prediction, protein function prediction

[56]

ESM-IF1 Transformer with Geometric Vector 
Perceptron (GVP) layers

Sequences and structures from CATH 
[81], UniRef50 sequences and their 
predicted structures using AlphaFold2

Inverse protein folding (predicting 
sequence from structure)

[73]

ESM-3 Bidirectional transformer Sequences from UniRef, MGnify [82], 
JGI [82, 83], OAS [59], Sequences 
and structures from PDB, AlphaFoldDB, 
ESMAtlas

Multimodal protein generation 
(sequence, structure, function), protein 
design

[64]

AntiBERTy BERT Natural antibody sequences [84, 85] Understanding antibody affinity 
maturation process, generating diverse 
antibody sequences

[57]

AbLang Transformer OAS Completing antibody sequences, 
identifying functionally relevant 
mutations, designing novel antibodies

[58]

IgBert BERT OAS (unpaired + paired) Antibody sequence recovery, binding 
affinity prediction

[60]

IgT5 Text-to-Text Transfer Transformer (T5) OAS (unpaired + paired) Antibody sequence recovery, binding 
affinity prediction

[60]
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In addition, recent work has focused on developing 
methods for de novo design of proteins, particularly 
for binder design. RFdiffusion is a notable example, 
employing a diffusion-based generative model adaptable 
for antibody design [67]. This method allows for 
the generation of antibodies with desired structural 
features, such as specific CDR loop conformations or 
binding orientations, and has successfully generated 
single-domain antibodies and single-chain Fv (scFv) de 
novo [68]. AlphaProteo is another example that uses 
a diffusion-model-based approach to generate novel 
protein binders that target specific epitopes with high 
affinity [69]. While AlphaProteo was used to design de 
novo proteins that are not antibodies, its underlying 
diffusion-based approach could, in theory, be modified 
for antibody design, notably by focusing on CDR regions.

Practical examples of data‑driven antibody design
This section highlights the practical applications of data-
driven methods in antibody engineering, demonstrating 
how ML is transforming antibody design and 
optimization (Table 4). These methods have been shown 
to increase binding affinity and to refine other properties 
that are critical for the efficacy and developability of 
antibodies. This enhances the connection between 
computational predictions and experimental validation.

Affinity maturation
A primary focus of data-driven antibody engineering 
is affinity maturation, which enhances the antibody 
binding strength. Traditionally, this process has been 
labor-intensive and relied on trial and error. However, 
AI-driven methods powered by large antibody datasets 
and advances in machine learning have enabled more 
efficient and rational approaches.

The integration of ML with high-throughput display 
technologies, such as phage and yeast display, has 
proven particularly powerful. These technologies 
allow for the rapid screening of vast antibody libraries, 
generating extensive datasets of antibody sequences and 
their corresponding binding affinities, which provide 
invaluable training data for ML models. For example, 
Mason et  al. used deep neural networks to predict the 
antigen specificity of trastuzumab variants displayed on 
mammalian cells [35]. Their model, trained on data from 
FACS screening, successfully classified binders and non-
binders. Specifically, they were able to identify 30 out 
of 30 predicted variants that retained binding to HER2, 
demonstrating a significant improvement in identifying 
HER2-specific subsets from a vast space of virtual 
variants. This exemplifies how deep learning can predict 
antibody specificity from sequence data, streamlining the 
screening of extensive libraries.

Similarly, Arras et  al. combined yeast display, next-
generation sequencing, and AI/ML to optimize 
humanized single-domain antibodies [32]. By analyzing 
sequence data, their approach rapidly identified potent 
VHH hits. Their work resulted in several optimized 
VHH hits from four different clusters that exhibited 
high-affinity binding and favorable early developability 
profiles. This study highlights the combined power of 
experimental and computational approaches to accelerate 
antibody optimization.

Other ML models have also demonstrated success in 
predicting and optimizing antibody affinity. Bachas et al. 
employed deep learning to predict binding affinities 
via high-throughput FACS- and SPR-based systems 
[70]. Their models accurately predicted the binding 
affinities of unseen variants across a large mutational 
space, demonstrating the potential of deep learning 
for the quantitative prediction of antibody‒antigen 
interactions. Their work also emphasized the importance 
of considering developability and immunogenicity 
during the design process by introducing "naturalness" 
as a metric for assessing variant similarity to natural 
immunoglobulins.

The recent development of protein language models 
(PLMs) trained on massive protein sequence databases 
has revolutionized antibody affinity maturation. These 
models capture the intricate relationships among 
sequence, structure, and function, enabling accurate and 
nuanced predictions for antibody design without the 
need for acquiring new, task-specific training data. For 
example, deep generative models based on PLM have 
been successfully applied to guide affinity maturation 
[71], leveraging the pre-trained knowledge embedded 
within the PLM to explore vast sequence spaces and 
identify high-affinity variants. This effectively reduces the 
dependence on costly and time-consuming experimental 
screenings. Furthermore, they provided another striking 
example of the power of structure-guided PLMs [72]. 
They utilized an inverse folding model, ESM-IF1 [73], 
augmented with structural information to guide the 
evolution of antibodies. This approach, when applied 
to two therapeutic antibodies against SARS-CoV-2, 
resulted in up to a 25-fold improvement in neutralization 
and a 37-fold improvement in the affinity for antibody-
escaped viral variants. Crucially, this improvement was 
achieved by leveraging the structural information of the 
antibody‒antigen complex, showcasing the advantage 
over sequence-only based PLMs. This study highlights 
the value of incorporating structural information into 
PLMs for antibody optimization, thereby opening new 
possibilities for enhancing antibody function.

Combining language models with Bayesian 
optimization further enhances the effectiveness of 
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affinity maturation. Li et  al. integrated BERT language 
models with a yeast mating assay, achieving a 28.7-
fold improvement in binding affinity compared with 
traditional methods [74]. Similarly, Parkinson et  al. 
developed the RESP pipeline, which uses a pre-trained 
autoencoder and a variational Bayesian neural network to 
explore the sequence space and improve antibody affinity 
[75]. These hybrid approaches demonstrate the potential 
of combining ML techniques to achieve significant 
improvements in affinity maturation.

Beyond these approaches, recent work has 
demonstrated the potential of combining PLMs with 
active learning for rapid antibody optimization. Jiang 
et al. developed EVOLVEpro, a platform that integrates a 
PLM with a few-shot active learning strategy to improve 
antibody properties iteratively [76]. By focusing on a 
small number of experimental measurements in each 
round, EVOLVEpro was able to significantly enhance the 
binding affinity of antibodies against two targets.

Beyond affinity: optimizing specificity, stability, 
and developability
Data-driven approaches are also instrumental in 
addressing antibody properties beyond affinity, which is 
crucial for therapeutic success. This includes optimizing 
specificity to minimize off-target binding and reduce 
potential side effects. Saksena et  al. demonstrated a 
computational counterselection method using machine 
learning, surpassing traditional methods in identifying 
non-specific therapeutic biologic candidates [30]. Their 
approach, which trained on enrichment over rounds 
of panning in phage display experiments, showed that 
computational counterselection outperformed molecular 
counterselection in removing off-target antibodies.

Enhancing stability is also critical for developability 
and manufacturability. Harmarkar et  al. successfully 
developed an ML model to predict the thermostability 
of scFv antibodies [47]. Using sequence and structural 
features, and validating their model with experimental 
measurements, they pinpointed key residue positions 
and mutations that enhanced stability. Similarly, Alvarez 
and Dean demonstrated the effectiveness of using protein 
embeddings, specifically those derived from the ESM-2 
model, to predict the Tm of nanobodies [77]. Their tool, 
TEMPRO, achieved high accuracy in predicting the Tm, 
offering a valuable resource for optimizing nanobody 
stability for various biomedical and therapeutic 
applications.

Addressing the challenge of high viscosity at high 
concentrations, which can hinder formulation and 
administration, is also possible with data-driven 
approaches. DeepSCM, a convolutional neural network 
model, can predict antibody viscosity solely on the basis 

of sequence information, offering a promising solution for 
streamlining formulation development [78]. Trained on a 
dataset of 6596 nonredundant antibody variable regions, 
DeepSCM achieved a linear correlation coefficient 
of 0.9 with experimental viscosity measurements, 
demonstrating its potential for high-throughput viscosity 
screening. Finally, ML holds immense potential for 
optimizing a wider spectrum of developability-related 
properties, such as aggregation propensity, solubility, 
and expression levels. Makowski et al. demonstrated this 
by constructing an interpretable ML model to identify 
antibody mutants with optimized non-specific binding 
and self-aggregation properties, providing a powerful 
tool to address critical developability challenges [79].

The continued development and application of data-
driven approaches hold immense potential for designing 
and optimizing antibodies with improved binding affinity, 
specificity, stability, and overall developability.

Conclusions
Driven by high-throughput experimental techniques and 
advanced ML methods, data-driven antibody engineering 
has remarkably progressed. This combination has 
accelerated the discovery and optimization of therapeutic 
antibodies, thereby addressing conventional empirical 
limitations.

The application of ML models to large-scale antibody 
datasets, including sequences, structures, and binding 
assay readouts, can accurately predict critical properties 
such as affinity, specificity, and developability. These 
capabilities enable researchers to rationally design 
antibodies and efficiently optimize existing leads.

High-throughput techniques, including NGS, display 
technologies, and biophysical assays, can be used to 
generate comprehensive datasets for the development 
of ML models. Advanced featurization strategies, 
such as protein language models and graph neural 
networks, effectively capture intricate sequence–
structure–function relationships and enhance predictive 
performance. Emphasis on capturing both sequence and 
structural features is key to the success of these strategies.

The recent advancements in PLMs are particularly 
remarkable, enabling the proposition of effective 
sequence designs from limited data [71, 72, 76]. In this 
context, in-depth biophysical measurement techniques 
for individual clones, which have traditionally been used 
only for validation due to throughput limitations, are 
expected to become increasingly important as sources of 
training data.

Although considerable progress has been made, 
several issues still require attention. The intricacies of 
antibody–antigen interactions, particularly in the context 
of conformational epitopes and dynamics, necessitate 
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the development of more sophisticated models that 
can accurately capture these nuances. Furthermore, the 
prediction of multiple properties such as immunogenicity 
and manufacturability requires further research.

In the future, the continued expansion of antibody 
datasets driven by collaborative efforts and data-sharing 
initiatives will be crucial for training more robust and 
generalized ML models. Moreover, the implementation 
of interpretable and explainable AI techniques is pivotal 
for elucidating the molecular determinants of antibody 
function and guiding rational engineering strategies.

Presently, many pharmaceutical companies are 
engaged in the acquisition of large-scale datasets, which 
they subsequently utilize to design therapeutic drugs 
with the aid of AI. For example, ABS-101, an anti-TL1A 
antibody designed via Absci’s AI platform, has initiated 
an Investigational New Drug (IND) application for the 
treatment of inflammatory bowel disease and other 
diseases characterized by inflammation and fibrosis [80]. 
It is anticipated that this trend will persist. However, there 
are concerns that commercial companies with substantial 
investments in this field may exercise exclusive control 
over these datasets. In this context, there is a strong 
need for the further development of open, large-scale 
protein language models and methodologies that 
facilitate iterative, relatively small-scale experimentation 
to enhance target physical properties for the sustainable 
development of this research field.

In conclusion, data-driven antibody engineering 
has emerged as a transformative paradigm for 
revolutionizing the development of novel therapeutic 
antibodies. Capitalizing on the complementarity 
between high-throughput experimentation and ML, 
this approach offers a rational, efficient, and scalable 
framework to address the growing global demand for 
innovative biological drugs that can be used to treat 
diverse diseases. High-throughput experimentation 
plays a crucial role not only in generating the large-scale 
datasets required for training robust ML models but also 
in providing the necessary experimental validation of 
model predictions. The iterative cycle of computational 
design and experimental validation is key to the success 
of data-driven antibody engineering.
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